The Productivity Effect of Markups: **Evidence from Chilean Plants**

Ana P. Cusolito World Bank

Álvaro García-Marín William F. Maloney Universidad de Chile

World Bank

OECD-Chile Productivity Conference 6 December 2016

Motivation

- Recent research shows plants' profitability key for growth
- Important dimension: plant-level markups
 - Reflect competitive position
 - ► Effect on aggregate productivity: unproductive firms shrink/go bankrupt with competition ⇒ economy-wide efficiency rises due to reallocation across firms/plants
 - Within firms/plants: affect incentives of plants/firms to engage in innovation activities → effect on physical productivity (TFPQ)
- Despite the relevance of markups, little evidence on their role in explaining plants' growth and efficiency

3

Motivation

- Recent research shows plants' profitability key for growth
- Important dimension: plant-level markups
 - Reflect competitive position
 - ► Effect on aggregate productivity: unproductive firms shrink/go bankrupt with competition ⇒ economy-wide efficiency rises due to reallocation across firms/plants
 - Within firms/plants: affect incentives of plants/firms to engage in innovation activities → effect on physical productivity (TFPQ)
- Despite the relevance of markups, little evidence on their role in explaining plants' growth and efficiency
- This paper: Do markups matter for plants' efficiency?
 - Studies direct impact on productivity and assess effect on innovation incentives
 - Policy implication: competition and aggregate efficiency

Competition and innovation Hypothesis and implications

Two main views:

- Competition foster innovation (threat to monopoly rents)
 - Incumbent firms innovate more in order to escape competition
- ② Competition reduce incentives to innovate (lower rents)
 - Besides: innovation typically has high financial needs
 - \rightarrow require relatively high margins

4 3 5 4 3 5 5

< 6 k

Competition and innovation Hypothesis and implications

Two main views:

- Competition foster innovation (threat to monopoly rents)
 - Incumbent firms innovate more in order to escape competition
- Ocmpetition reduce incentives to innovate (lower rents)
 - Besides: innovation typically has high financial needs
 require relatively high margins
 - If competition does hurt laggard business' incentives to innovate:
 - Trade-off between short-run and long-run effect of competition
 - Long-run: increase in market power of current leading companies

イロト イポト イラト イラト

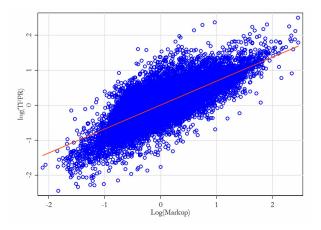
How economists think about efficiency...

- Physical output $Y = A \cdot f(\text{capital, labor, materials...})$
 - A: "true" efficiency
 - ► Typically: do not observe Y but **p** · **Y** = product revenue
 - The revenue production function is then

 $p \cdot Y = p \cdot A \cdot f(\text{capital, labor, materials...})$

How economists think about efficiency...

- Physical output $Y = A \cdot f(\text{capital, labor, materials...})$
 - A: "true" efficiency
 - Typically: do not observe Y but p · Y = product revenue
 - The revenue production function is then


 $p \cdot Y = p \cdot A \cdot f(\text{capital, labor, materials...})$

- Most papers analyze revenue productivity (p · A, TFPR).
- Issues:
 - Unrelated to "true" efficiency under mild conditions (CRS)
 - Reflect differences in markups and input prices
 - Thus: mechanical positive relation bt. markups and TFPR

イロト イポト イラト イラト

Plant-level Markups and TFPR in Chile

Cross-sectional dispersion; Correlation coefficient: .84

< A >

Markups and Plant-efficiency: Empirical challenges (and solutions)

Find efficiency measure not affected by price bias

 <u>Solution</u>: Construct plant-level price deflators, and compute physical productivity (real output as dependent variable – TFPQ)

2 Deal with reverse causation from efficiency \rightarrow markups

- More efficient plants capture a larger share of the market and are able to charge higher markups
- <u>Solution</u>: source of exogenous demand variation in markups (unrelated to plants' technology)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Markups and Plant-efficiency:

Instrumental variables approach

- Idea: demand shocks to competitors unrelated to plant-efficiency
- Thus, use average markup of competitors as instrument
 - First stage:

$$\log(\mu_{is,t-1}) = \alpha_{st} + \beta_1 \log(\overline{\mu}_{-is,t-1}) + \gamma_1 X_{ist} + \varepsilon_{ist}$$

Second stage:

$$\ln TFPQ_{ist} = \delta_{st} + \beta_2 \ln(\mu_{is,t-1}) + \gamma_2 X_{ist} + \vartheta_{ist}$$

4 3 5 4 3 5 5

< 17 ▶

Markups and Plant-efficiency:

Instrumental variables approach

- Idea: demand shocks to competitors unrelated to plant-efficiency
- Thus, use average markup of competitors as instrument
 - First stage:

$$\log(\mu_{is,t-1}) = \alpha_{st} + \beta_1 \log(\overline{\mu}_{-is,t-1}) + \gamma_1 X_{ist} + \varepsilon_{ist}$$

Second stage:

$$\ln TFPQ_{ist} = \delta_{st} + \beta_2 \ln(\widehat{\mu_{is,t-1}}) + \gamma_2 X_{ist} + \vartheta_{ist}$$

- Data: Panel of Chilean manufacturing plants, period 1996-2007
 - ► Covers universe of manufacturing plants with ≥10 workers
 - ▶ 4,800 plants p/year, 20% exporters, 2/3 of all plants are small (≤ 50 employees)

TFP Distribution

Markups and productivity: IV results

Baseline

	OLS	First Stage	2SLS	Red. Form
	(1)	(2)	(3)	(4)
Dep. Variable	In(<i>TFPQ_{ist}</i>)	$\ln(\mu_{is,t-1})$	In(TFPQ _{ist})	In(<i>TFPQ_{ist}</i>)
$\ln(\mu_{is,t-1})$.0501***	—	.189***	_
	(.0102)		[.000]	
$\log(\mu_{-is,t-1})$	—	.440***	—	.0834***
. , .		(.0242)		(.0233)
First Stage F-Stat	—	331.0	—	_
Industry-year FE	\checkmark	\checkmark	\checkmark	\checkmark
Observations	25,404	25,404	25,404	25,404

Notes: This table examines the effect markups on TFPQ. The OLS regression between of TFPQ on markups are reported in column 1. Column 2 reports first-stage results, together with the (cluster-robust) Kleibergen-Paap rK Wald F-statistic. The corresponding Stock-Yogo value for 10% (15%) maximal IV bias is 16.4 (8.96). Second stage results (column 3) report the p-values [in square brackets] for the Anderson-Rubin (Chisquare) test of statistical significance (heteroskedasticity-robust). This test is robust to weak instruments (see Andrews and Stock, 2005, for a detailed review). All regressions are run at the plant-year level, control for the logarithm of employment and for initial plant-level physical productivity, and include industryyear (at the 2-digit level) fixed-effects. Standard errors are clustered at the industry-year level. Key: ** significant at 1%; ** 5%; * 10%.

Results: Taking stock

Markups positively related to both TFPR and TFPQ:

- TFPR varies hand-in hand with markups
- Positively related to TFPQ, strong relation:
 - Moving a plant from 25th to 75th percentile of markup distribution related to about 9% additional TFPQ

不得る 不良る 不良る

Results: Taking stock

Markups positively related to both TFPR and TFPQ:

- TFPR varies hand-in hand with markups
- Positively related to TFPQ, strong relation:
 - Moving a plant from 25th to 75th percentile of markup distribution related to about 9% additional TFPQ
- Questions:
 - What's the mechanism? Theory suggests that the positive link between markups and TFPQ occurs through investment in R&D and technology
 - Peterogeneity: Does the effect differ in leading vs. laggard plants?

イロト イポト イラト イラト

1. Why do markup increases lead to higher TFPQ?

Markups, R&D and technological investment (IV regressions, in logs)

- <u>Data</u>: Chilean Technological Innovation Survey (EIT)
 - Non-repeated cross-sections for 1997-98, 2000-01 and 2003-07
 - Covers about 1/5 of plants in ENIA (from 8% in '97, to 28% in '07)

- A TE N - A TE N

1. Why do markup increases lead to higher TFPQ?

Markups, R&D and technological investment (IV regressions, in logs)

- <u>Data</u>: Chilean Technological Innovation Survey (EIT)
 - Non-repeated cross-sections for 1997-98, 2000-01 and 2003-07
 - Covers about 1/5 of plants in ENIA (from 8% in '97, to 28% in '07)

-	(1)	(2)	(3)	(4)	(5)	(6)
Dependent		R&D Expenditure		Patents Machinery & Equ		Equipment
Variable	In(TFPQ _{ist})	Overall	In-House	Licenses	Innovative	General
$\log(\mu_{ij,t-1})$.570***	4.038***	3.122***	2.658***	2.062**	3.000***
	[.000]	[.0002]	[.0019]	[.0018]	[.0319]	[.0023]
First Stage F-Stat	256.8	271.1	271.1	271.1	271.1	271.1
Industry-year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	3,428	3,428	3,428	3,428	3,428	3,428

Notes: Dependent variable 'x' in columns 2-6 are log(1+x) to include zeros. All regressions controls for the initial physical productivity, size and for industry-year fixed effects. The first-stage statistic corresponds to the (cluster-robust) Kleibergen-Paap rK Wald F-statistic. The corresponding Stock-Yogo value for 10% (15%) maximal IV bias is 16.4 (8.96). P-values [in square brackets] are for the Anderson-Rubin (Chi-square) test of statistical significance (heteroskedasticity-robust). Standard errors are clustered at the industry-year level. Key: ** significant at 1%; ** 5%; * 10%.

< 日 > < 同 > < 回 > < 回 > < □ > <

2. Leading vs laggard plants

Markups, R&D and technological investment (IV regressions, in logs)

Dependent Variable	Physical Productivity		R&D Exp	enditure
	(1)	(2)	(3)	(4)
$log(\mu_{is,t-1})$.576***	511	3.060***	-4.170
	(.0804)	(.373)	(1.037)	(3.480)
$\textit{log}(\mu_{\textit{is},t-1}) imes \textit{TFPQ}_{\textit{is},t-1}^{\textit{GAP}}$	_	.142**	_	1.554*
		(.0717)		(.809)
TFPQ ^{GAP} _{is.t-1}	-	719***		.543**
10,1		(.0362)		(.255)
First Stage F-Statistic	276.5	26.57	281.3	28.33
Industry-year FE	\checkmark	\checkmark	✓	\checkmark
Observations	3,344	3,344	3,344	3,344

Notes: Dependent variable 'x' in columns 2-6 are log(1+x) to include zeros. All regressions controls for the initial physical productivity, size and for industry-year fixed effects. The first-stage statistic corresponds to the (cluster-robust) Kleibergen-Paap rK Wald F-statistic. The corresponding Stock-Yogo value for 10% (15%) maximal IV bias is 16.4 (8.96). P-values [in square brackets] are for the Anderson-Rubin (Chi-square) test of statistical significance (heteroskedasticity-robust). Standard errors are clustered at the industry-year level. Key: ** significant at 1%; ** 5%; * 10%.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Concluding Remarks

This paper: relationship bt. markups & productivity

- Empirical issues: measurement (TFPR vs. TFPQ) and identification
- Productivity effect of markups": Moving a plant from 25th to 75th percentile of markup distribution related to 9% additional TFPQ

BA 4 BA

Concluding Remarks

- This paper: relationship bt. markups & productivity
 - Empirical issues: measurement (TFPR vs. TFPQ) and identification
 - Productivity effect of markups": Moving a plant from 25th to 75th percentile of markup distribution related to 9% additional TFPQ

Positive link occurs through investment in R&D and technology

- Markup increases related to higher investm't in R&D and techn.
- Higher spending in R&D and techn. \rightarrow higher TFPQ
- Back-of-the-envelope calculation: same order of magnitude than TFPQ-markup reduced form

イベト イラト イラト・

Concluding Remarks

This paper: relationship bt. markups & productivity

- Empirical issues: measurement (TFPR vs. TFPQ) and identification
- Productivity effect of markups": Moving a plant from 25th to 75th percentile of markup distribution related to 9% additional TFPQ

Positive link occurs through investment in R&D and technology

- Markup increases related to higher investm't in R&D and techn.
- Higher spending in R&D and techn. \rightarrow higher TFPQ
- Back-of-the-envelope calculation: same order of magnitude than TFPQ-markup reduced form
- Effect mostly accounted by laggard plants:
 - Competition hurt laggard business' incentives to innovate
 - Long-run implication: competition increase market power of current leading companies and hurt productivity dynamic in laggard plants

3

The Productivity Effect of Markups: Evidence from Chilean Plants

Ana P. Cusolito Álvaro García-Marín William F. Maloney World Bank Universidad de Chile World Bank

> OECD-Chile Productivity Conference 6 December 2016

Cusolito / Garcia-Marin / Maloney

The Productivity Effect of Markups

6 December 2016 13 / 12

BACKUP

Cusolito / Garcia-Marin / Maloney

The Productivity Effect of Markups

6 December 2016 14 / 12

э

A (10) > A (10) > A (10)

Markups and its relationship with Productivity Simple Framework

• Use $p = \mu \cdot MC$, μ : Markup

 $\mathsf{TFPR} = \mu \cdot MC(A, \mathbf{w}) \cdot A$

3

Markups and its relationship with Productivity Simple Framework

• Use $p = \mu \cdot MC$, μ : Markup

 $\mathsf{TFPR} = \mu \cdot MC(A, \mathbf{w}) \cdot A$

Let △ represent log changes:

$$\triangle \mathsf{TFPR} = \triangle \mu + \triangle MC(A, \mathbf{w}) + \triangle A$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Markups and its relationship with Productivity Simple Framework

• Use $p = \mu \cdot MC$, μ : Markup

$$\mathsf{TFPR} = \mu \cdot MC(A, \mathbf{w}) \cdot A$$

Let △ represent log changes:

$$\triangle \mathsf{TFPR} = \triangle \mu + \triangle MC(A, \mathbf{w}) + \triangle A$$

Assume:

• CRS
$$\Rightarrow \triangle MC(A, \mathbf{w}) = \triangle \phi(\mathbf{w}) - \triangle A$$

• This implies:
$$\triangle \mathsf{TFPR} = \triangle \mu + \triangle \phi(\mathbf{w})$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Markups and its relationship with Productivity Main conclusion

$$\triangle \mathsf{TFPR} = \triangle \mu + \triangle \phi(\mathbf{w})$$

Thus:

- Efficiency gains only show on TFPR if it affects markups (mkt. power) of input prices (quality?)
- However, it may also reflect spurious gains due to demandinduced increases in markups

Empirical Approach for Measuring TFP and Markups

Markups: De Loecker and Warzynski (2012) Methodology

• Producers minimize costs (V_{it}: variable inputs, K_{it}: dynamic inputs):

$$\mathcal{L}(\mathbf{V}_{it},\mathbf{K}_{it},\lambda_{it}) = \sum_{\nu=1}^{V} P_{it}^{\nu} V_{it}^{\nu} + \mathbf{r}_{it} \mathbf{K}_{it} + \lambda_{it} [\mathbf{Q}_{it} - \mathbf{Q}_{it} (\mathbf{V}_{it},\mathbf{K}_{it},A_{it})]$$

3

Empirical Approach for Measuring TFP and Markups Markups: De Loecker and Warzynski (2012) Methodology

• Producers minimize costs (Vit: variable inputs, Kit: dynamic inputs):

$$\mathcal{L}(\mathbf{V}_{it},\mathbf{K}_{it},\lambda_{it}) = \sum_{\nu=1}^{V} \mathbf{P}_{it}^{\nu} \mathbf{V}_{it}^{\nu} + \mathbf{r}_{it} \mathbf{K}_{it} + \lambda_{it} [\mathbf{Q}_{it} - \mathbf{Q}_{it} (\mathbf{V}_{it},\mathbf{K}_{it},A_{it})]$$

F.O.C.:
$$\frac{\partial \mathcal{L}}{\partial V_{it}^{\nu}} = P_{it}^{\nu} - \lambda_{it} \frac{\partial Q_{it}(\cdot)}{\partial V_{it}^{\nu}} = 0$$
$$\Rightarrow \frac{P_{it}^{\nu} V_{it}^{\nu}}{Q_{it}} = \frac{P_{it}}{\mu_{it}} \frac{\partial Q_{it}(\cdot)}{\partial V_{it}^{\nu}} \frac{V_{it}^{\nu}}{Q_{it}}$$
$$\Rightarrow \text{Markup:} \quad \mu_{it} = \underbrace{\theta_{it}^{\nu}}_{\text{Output Elast.}} \cdot \underbrace{\left[\frac{P_{it}^{\nu} V_{it}^{\nu}}{P_{it} Q_{it}}\right]^{-1}}_{\text{Expendit. Share}}$$

Independent of demand side

Back

Empirical Approach for Measuring TFP and Markups

Production Function Estimation

 Cobb-Douglas production function with labor (*I*), capital (*k*) and materials (*m*) as inputs:

$$\mathbf{q}_{it} = \beta_l^{\mathbf{s}} \mathbf{I}_{it} + \beta_k^{\mathbf{s}} \mathbf{k}_{it} + \beta_m^{\mathbf{s}} \mathbf{m}_{it} + \omega_{it} + \varepsilon_{it}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Empirical Approach for Measuring TFP and Markups

Production Function Estimation

 Cobb-Douglas production function with labor (*I*), capital (*k*) and materials (*m*) as inputs:

$$\mathbf{q}_{it} = \beta_{l}^{s} \mathbf{I}_{it} + \beta_{k}^{s} \mathbf{k}_{it} + \beta_{m}^{s} \mathbf{m}_{it} + \omega_{it} + \varepsilon_{it}$$

- Allow for IRS/DRS
- The estimation of β follows Ackerberg et al (2006)
 - Correct for endogeneity in input choice
 - Allow productivity to be affected by previous export-status:

$$\omega_{it} = \boldsymbol{g}(\omega_{it-1}, \boldsymbol{d}_{it-1}^{\mathsf{x}}, \boldsymbol{d}_{it-1}^{i}) + \xi_{it}$$

- d^x_{it}: export dummy, dⁱ_{it} dummy for investment in physical capital (De Loecker, AEJM 2013)
- Deals with potential misidentification of the labor coefficient in Olley and Pakes (1996) and Levinsohn and Petrin (2003)

Back

Empirical Approach for Measuring TFP and Markups Plant-Level Price Indexes

- For TFPQ, we need plant-level price deflators
- Approach: Tornqvist price indexes
 - Log-change in plant-level prices Δp_{it} for plant *i* in period *t*:

$$\Delta p_{it} = \sum_{v \in \Phi_v} \phi_{iv} (\ln P_{ivt} - \ln P_{iv,t-1})$$

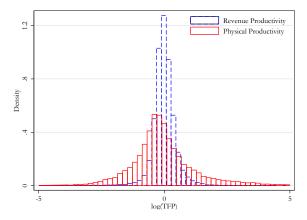
• Given Δp_{it} , price index can be computed recursively as:

$$\ln P_{it} = \ln P_{i,t-1} + \Delta p_{it}$$

 Initial period: weighted average of log-deviations from product average for each product

Data

The ENIA


- Panel of Chilean manufacturing plants, period 1996-2007
- Covers universe of manufacturing plants with \geq 10 workers
 - ▶ 4,800 plants p/year, 20% exporters, 2/3 of all plants are small (≤ 50 employees)
- Standard plant-level information (size, revenues, sector...). Plus:
 - Value and quantity of all products
 - Variable cost for each product
 - Value and quantity of all inputs

э.

イロト イポト イラト イラト

Overview: Productivity Distributions

Physical productivity shows higher dispersion than revenue productivity

Notes: This figure shows the distribution of physical productivity and revenue productivity ("TFPR", blue-dashed bars) over a sample of 46,058 plant-year observations over 1996-2007. All variables are measured in logarithms, and are demeaned with respect to the respective (2-digit) sector-year averages.

4 A 1

Overview: Summary Statistics

Correlations	Price	TFPQ	TFPR	Markup
Price	1.0000			
Physical TFPQ	-0.8737	1.0000		
Revenue TFP	0.0201	0.4432	1.0000	
Markups	0.0043	0.3895	0.8426	1.000
Standard Deviation	0.9155	1.0329	0.4927	0.5468

Notes: This table shows correlations and standard deviations for plant-level variables over 1996-2007. All variables are measured in logarithms, and are demeaned with respect to the respective sector-year averages.

3

イロト イロト イヨト イヨト

Overview: Summary Statistics

Correlations	Price	TFPQ	TFPR	Markup
Price	1.0000			
Physical TFPQ	-0.8737	1.0000		
Revenue TFP	0.0201	0.4432	1.0000	
Markups	0.0043	0.3895	0.8426	1.000
Standard Deviation	0.9155	1.0329	0.4927	0.5468

Notes: This table shows correlations and standard deviations for plant-level variables over 1996-2007. All variables are measured in logarithms, and are demeaned with respect to the respective sector-year averages.

Three observations:

- Strong negative correlation between TFPQ and prices
- Markup variation translates almost 1-to-1 into TFPR Markup vs. TFPR
 - Markups (not input prices) captures most of variation in TFPR
- Markups as correlated as TFPR with TFPQ

Robustness Checks

- Reported "markups": Price over average variable cost; results not driven by estimation of markups
- Plant-level input prices: TFPQ measure using both input and output prices (reduced sample, 2/3 of ttl plant-year obs.),
- Single vs. multi-product Producers: No aggregation needed when constructing price index for SP plants

Robustness: Alternative Specifications

	(1)	(2)	(3)
Specification	Input &	Reported	Single-product
	Output Prices	AV Margin	plants
$\log(\mu_{ij,t-1})$.124**	.725***	.213**
• /	[.0494]	[.000]	[.0143]
First Stage F-Stat	202.0	80.71	299.0
Industry-year FE	\checkmark	\checkmark	\checkmark
Observations	16,955	25,120	8,352

Notes: This table examines the effect markups on TFPQ. The OLS regression between of TFPQ on markups are reported in column 1. Column 2 reports first-stage results, together with the (cluster-robust) Kleibergen-Paap rK Wald F-statistic. The corresponding Stock-Yogo value for 10% (15%) maximal IV bias is 16.4 (8.96). Second stage results (column 3) report the p-values [in square brackets] for the Anderson-Rubin (Chisquare) test of statistical significance (heteroskedasticity-robust). This test is robust to weak instruments (see Andrews and Stock, 2005, for a detailed review). All regressions are run at the plant-year level, control for the logarithm of employment and for initial plant-level physical productivity, and include industryyear (at the 2-digit level) fixed-effects. Standard errors are clustered at the industry-year level. Key: ** significant at 1%; ** 5%, * 10%.

3

(a) < (a) < (b) < (b)

TFPQ and investment on R&D and technology (I)

Intensive+Extensive (logarithms)

	(1)	(2)	(3)	(4)	(5)	(6)
Overall R&D Exp.	.0082*** (.0020)	_	_	_	.0073*** (.0020)	_
In-House R&D Exp.	—	.0064*** (.0024)	—	—	_	.0041* (.0024)
Innovative Maq.& Equip.	—	—	.0066*** (.0020)	—	—	.0043** (.0021)
General Maq.& Equip.	—	—	_	.0081*** (.0025)	.0067*** (.0025)	.0072*** (.0026)
Industry-year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	3,428	3,428	3,428	3,428	3,428	3,428
R ²	.612	.611	.611	.611	.613	.613

э

< ロ > < 同 > < 回 > < 回 >

TFPQ and investment on R&D and technology (II)

Extensive Margin (investment dummies)

	(1)	(2)	(3)	(4)	(5)	(6)
Overall R&D Exp.	.0855*** (.0226)	_	_	_	.0808*** (.0229)	_
In-House R&D Exp.	—	.0531** (.0258)	_	—	_	.0328 (.0263)
Innovative Maq.& Equip.	—	—	.0619*** (.0228)	—	—	.0457* (.0233)
General Maq.& Equip.	—	—	—	.0558** (.0234)	.0465* (.0238)	.0505** (.0239)
Industry-year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	3,428	3,428	3,428	3,428	3,428	3,428
R ²	.612	.610	.611	.611	.612	.612

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >